Balanced Judicious Bipartition is Fixed-Parameter Tractable

نویسندگان

  • Daniel Lokshtanov
  • Saket Saurabh
  • Roohani Sharma
  • Meirav Zehavi
چکیده

The family of judicious partitioning problems, introduced by Bollobás and Scott to the field of extremal combinatorics, has been extensively studied from a structural point of view for over two decades. This rich realm of problems aims to counterbalance the objectives of classical partitioning problems such as Min Cut, Min Bisection and Max Cut. While these classical problems focus solely on the minimization/maximization of the number of edges crossing the cut, judicious (bi)partitioning problems ask the natural question of the minimization/maximization of the number of edges lying in the (two) sides of the cut. In particular, Judicious Bipartition (JB) seeks a bipartition that is “judicious” in the sense that neither side is burdened by too many edges, and Balanced JB also requires that the sizes of the sides themselves are “balanced” in the sense that neither of them is too large. Both of these problems were defined in the work by Bollobás and Scott, and have received notable scientific attention since then. In this paper, we shed light on the study of judicious partitioning problems from the viewpoint of algorithm design. Specifically, we prove that BJB is FPT (which also proves that JB is FPT).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Balanced judicious bipartitions of graphs

A bipartition of the vertex set of a graph is called balanced if the sizes of the sets in the bipartition differ by at most one. Bollobás and Scott [3] conjectured that if G is a graph with minimum degree at least 2 then V (G) admits a balanced bipartition V1, V2 such that for each i, G has at most |E(G)|/3 edges with both ends in Vi. The minimum degree condition is necessary, and a result of B...

متن کامل

Balanced vertex-orderings of graphs

In this paper we consider the problem of determining a balanced ordering of the vertices of a graph; that is, the neighbors of each vertex v are as evenly distributed to the left and right of v as possible. This problem, which has applications in graph drawing for example, is shown to be NP-hard, and remains NP-hard for bipartite simple graphs with maximum degree six. We then describe and analy...

متن کامل

Imbalance Is Fixed Parameter Tractable

In the Imbalance Minimization problem we are given a graph G = (V,E) and an integer b and asked whether there is an ordering v1 . . . vn of V such that the sum of the imbalance of all the vertices is at most b. The imbalance of a vertex vi is the absolute value of the difference between the number of neighbors to the left and right of vi. The problem is also known as the Balanced Vertex Orderin...

متن کامل

On the computational complexity of finding a minimal basis for the guess and determine attack

Guess-and-determine attack is one of the general attacks on stream ciphers. It is a common cryptanalysis tool for evaluating security of stream ciphers. The effectiveness of this attack is based on the number of unknown bits which will be guessed by the attacker to break the cryptosystem. In this work, we present a relation between the minimum numbers of the guessed bits and uniquely restricted...

متن کامل

A note on balanced bipartitions

A balanced bipartition of a graph G is a bipartition V1 and V2 of V (G) such that −1 ≤ |V1| − |V2| ≤ 1. Bollobás and Scott conjectured that if G is a graph with m edges and minimum degree at least 2 then G admits a balanced bipartition V1, V2 such that max{e(V1), e(V2)} ≤ m/3, where e(Vi) denotes the number of edges of G with both ends in Vi. In this note, we prove this conjecture for graphs wi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017